Fourier transform perturbation solution of elliptic equations with small nonlinearities
نویسندگان
چکیده
منابع مشابه
Small Perturbation Solutions for Elliptic Equations
In this work we present a general regularity result for small perturbation solutions of elliptic equations. Our approach was motivated by the analysis of flat level sets in Ginzburg-Landau phase transitions models, which were considered in Savin (2003). When dealing with uniformly elliptic equations of the form (1), the classical approach to regularity is to differentiate the equation with resp...
متن کاملDegenerate elliptic equations with singular nonlinearities
The behavior of the “minimal branch” is investigated for quasilinear eigenvalue problems involving the p-Laplace operator, considered in a smooth bounded domain of RN , and compactness holds below a critical dimension N #. The nonlinearity f (u) lies in a very general class and the results we present are new even for p = 2. Due to the degeneracy of p-Laplace operator, for p = 2 it is crucial to...
متن کاملSemilinear Elliptic Equations with Generalized Cubic Nonlinearities
A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.
متن کاملNonlinearities distribution Laplace transform-homotopy perturbation method
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we ...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1982
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/678202